

Formation of short-lived radionuclides in the protoplanetary disk during late-stage irradiation of a volatile-rich reservoir

B. Jacobsen, J. Matzel, I. D. Hutcheon, A. N. Krot, Q. -Z. Yin, K. Nagashima, E. Ramon, P. Weber, H. Ishii, F. Ciesla

December 1, 2010

The Astrophysical Journal Letters

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

Formation of short-lived radionuclides in the protoplanetary disk during late-stage irradiation of a volatile-rich reservoir

Benjamin Jacobsen^{1,2,†}, Jennifer Matzel^{2,3}, Ian D. Hutcheon^{2,3}, Alexander N. Krot⁴, Qing-Zhu Yin¹, Kazuhide Nagashima⁴, Erick C. Ramon², Peter K. Weber², Hope A. Ishii³, Fred J. Ciesla⁵

¹Department of Geology, University of California, Davis, CA 95616, USA

²Glenn T. Seaborg Institute, Chemical Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

³Institute for Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

⁴School of Ocean, Earth Science and Technology, Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA

⁵Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA

Abstract: 257 words

Text: 1,683 words

3 Figures, and Supplementary Information

Submitted to Nature, 30 November 2010

(Corresponding author: B. Jacobsen; E-mail: jacobsen5@llnl.gov; Tel: +1 925-422-1952)

[†]Present address: Glenn T. Seaborg Institute, Chemical Science Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

The origin of short-lived ($t_{1/2} < 5$ Myr) and now extinct radionuclides (10 Be, 26 Al, 36 Cl, 41 Ca, ⁵³Mn, ⁶⁰Fe; hereafter SLRs) is fundamental to understanding the formation of the early solar system. Two distinct classes of models have been proposed to explain the origin of SLRs¹⁻⁶: (1) injection from a nearby stellar source (e.g., supernova, asymptotic giant branch star or Wolf-Rayet star) and (2) solar energetic particle irradiation of dust and gas near the proto-Sun. Recent studies have demonstrated that ³⁶Cl was extant in the early solar system⁷⁻⁹. However, its presence, initial abundance and the noticeable decoupling from ²⁶Al raise serious questions about the origin of SLRs. Here we report ³⁶Cl-³⁶S and ²⁶Al-²⁶Mg systematics for wadalite and grossular, secondary minerals in a calciumaluminum-rich inclusion (CAI) from the CV chondrite Allende that allow us to reassess the origin of SLRs. The inferred abundance of ³⁶Cl in wadalite, corresponding to a ³⁶Cl/³⁵Cl ratio of (1.81±0.13)×10⁻⁵, is the highest ³⁶Cl abundance reported in any early solar system material. The high level of 36 Cl in wadalite and the absence of 26 Al (26 Al/ 27 Al $\leq 3.9 \times 10^{-6}$) in co-existing grossular indicates that (1) ³⁶Cl formed by late-stage solar energetic particle irradiation and (2) the production of ³⁶Cl, recorded by secondary minerals, is unrelated to the origin of ²⁶Al and other SLRs (¹⁰Be, ⁵³Mn) recorded by primary minerals of CAIs and chondrules. We conclude that ³⁶Cl was produced by solar energetic particle irradiation of a volatile-rich reservoir in an optically thin protoplanetary disk adjacent to the accretion region of the CV chondrite parent asteroid.

Short-lived radionuclides provide a unique source of information about the astrophysical environment in which the solar system formed as well as high-resolution chronology of early solar system events¹⁻⁶. The origin of SLRs in the early solar system, however, remains controversial¹. Two main classes of models proposed – injection of SLRs from a stellar source and solar energetic particle (SEP) irradiation – have widely different consequences for the expected occurrences and distribution of SLRs in the early solar system. SLRs produced by stellar nucleosynthesis and injected into the protosolar molecular cloud are expected to homogenize quickly in the solar nebula; as a result, variations in their relative abundances may be ascribed to the passage of time^{1,10}. In contrast, SLRs produced by SEP irradiation are more

likely to be heterogeneously distributed, and variations in their relative abundances would reflect the local energetic particle environment¹.

Recently, excesses of ³⁶S correlated with ³⁵Cl/³⁴S ratios, were reported in sodalite (Na₈Al₆Si₆O₂₄Cl₂), a secondary mineral in CAIs and chondrules from the Allende (CV) and Ningqiang (CV anomalous) carbonaceous chondrites^{7–9}. These studies provide clear evidence for in situ decay of ³⁶Cl in the early solar system; they also highlight the long standing dichotomy between the two classes of models proposed to explain the origin of SLRs. Theoretical calculations of SLR production by SEP irradiation^{5,6}, show that the highest reported ³⁶Cl (i.e., 36 Cl/ 35 Cl $\sim 5 \times 10^{-6}$) levels in sodalite^{7,8} are consistent with levels predicted for energetic particle irradiation of a reservoir with solar composition, but exceed by several orders of magnitude the values predicted for any stellar source¹. This is consistent with astronomical observations of premain-sequence, solar-type stars that show powerful X-ray flares believed to be accompanied by intense fluxes of accelerated particles¹¹. The irradiation models predict that the production of ³⁶Cl by SEP irradiation would not occur in isolation but be coupled to the production of other SLRs such as ²⁶Al, ⁵³Mn, and ¹⁰Be⁴⁻⁶. However, this prediction is inconsistent with the absence of ²⁶Al in sodalite containing large ³⁶S excesses^{7–9}. Moreover, high-precision ²⁶Al-²⁶Mg systematics of primary phases in chondrules from unmetamorphosed chondrites suggest that Earth, CAIs, and chondrules all formed from a reservoir with a homogeneous distribution of ²⁶Al, supporting its stellar origin¹². These conflicting data underscore the importance of ³⁶Cl and its relationship to ²⁶Al for understanding the origin of SLRs in the early solar system. This issue can be resolved if we understand when, where and how ³⁶Cl formed and was incorporated into primitive meteorites containing a wide spectrum of objects – CAIs, chondrules, and matrix.

To address this problem, we studied a coarse-grained igneous CAI AJEF from the Allende meteorite. Primary minerals in AJEF (anorthite, melilite, pyroxene, and spinel) define an internal 26 Al 26 Mg isochron with an initial 26 Al 27 Al ratio of $\sim 5 \times 10^{-5}$ (ref. 13). The melilite and anorthite are replaced by the co-existing secondary minerals, wadalite (Ca₆(Al,Si,Mg)₇O₁₆Cl₃) and grossular (Ca₃Al₂Si₃O₁₂) (Fig. 1; Supplementary Information (SI)), in which 36 Cl $^{-36}$ S and

²⁶Al-²⁶Mg isotope systematics could be measured. Wadalite is a chlorine-rich mineral recently described in the Allende CAIs¹⁴. The high chlorine (~12 wt%) and very low sulfur content (<<0.01 wt%) make wadalite ideal for studies of the ³⁶Cl-³⁶S system.

The isotope abundances of chlorine and sulfur in wadalite in AJEF were determined using the Lawrence Livermore National Laboratory *Cameca* NanoSIMS 50 (see SI), a secondary ion mass spectrometer (SIMS) with nanometer scale spatial resolution. The isotope abundances of magnesium in grossular coexisting with wadalite were measured using the *Cameca* ims 1280 at the University of Hawai'i (see SI).

The AJEF wadalite shows extremely large ³⁶S excesses with ³⁶S/³⁴S ratios of up to ~264 times that of the Canyon Diablo troilite standard value, correlated with the respective ³⁵Cl/³⁴S ratios (as high as ~2×10⁶; SI). The slope of a line fitted to the data yields an inferred ³⁶Cl/³⁵Cl ratio at the time of wadalite formation of (1.81±0.13)×10⁻⁵ (Fig. 2a). This value represents the highest initial abundance of ³⁶Cl reported in any meteorite and is more than four times greater than the highest ³⁶Cl/³⁵Cl initial ratio observed in sodalite in CAIs and chondrules^{7–9}.

Grossular associated with wadalite shows no resolvable 26 Mg excess (SI). The upper limit to the initial 26 Al/ 27 Al ratio in grossular is 3.9×10^{-6} (Fig. 2b). This value is similar to the upper limit obtained for sodalite in CV CAIs and chondrules $^{7-9}$. The absence of radiogenic 26 Mg in secondary grossular contrasts with the well-constrained primary mineral internal isochron in AJEF 13 yielding an initial 26 Al/ 27 Al ratio of $\sim 5 \times 10^{-5}$ and suggests that the wadalite-grossular paragenesis formed >2.6 Myr after crystallization of the CAI.

The well-defined ²⁶Al-²⁶Mg chronologies, for both primary and secondary minerals, within AJEF place important constraints on the origin of ³⁶Cl. If ³⁶Cl was produced together with ²⁶Al at the birth of the solar system, the late formation of wadalite inferred from the low (²⁶Al/²⁷Al)₀ ratio in co-genetic grossular, would require an unrealistically high initial ³⁶Cl/³⁵Cl ratio of >8.7×10⁻³ at the time the primary CAI mineral assemblage crystallized. This value is more than sixty times the maximum level that can be produced by SEP irradiation of gas and/or dust of solar composition^{5,6}. The high initial ³⁶Cl/³⁵Cl ratio in AJEF (1.8×10⁻⁵) thus indicates that

production of ³⁶Cl by SEP irradiation must have occurred late, >2 Myr after the formation of the first solar system solids and provides the first conclusive evidence that the ³⁶Cl found in secondary, low temperature minerals in CAIs and chondrules was produced in processes unrelated to those responsible for the SLRs (²⁶Al, ⁴¹Ca, ¹⁰Be) observed in primary, high temperature minerals in the same objects.

The suggestion that ³⁶Cl is produced by late-stage SEP irradiation must be evaluated against the predicted abundances of other SLRs, and compared to the observed abundances in early solar system solids. Evidence for late-stage production of SLRs, should be preserved in differentiated meteorites or in whole-rock samples of unequilibrated ordinary or carbonaceous chondrites. Assuming *late-stage* irradiation of a reservoir with solar composition and a particle fluence sufficient to produce ³⁶Cl corresponding to the inferred ³⁶Cl/³⁵Cl ratio in wadalite (~2×10⁻⁵), we estimate, using the most recent calculations^{5,6,15}, relative abundances of the coproduced ²⁶Al, ⁵³Mn and ¹⁰Be (Fig. 3). The range in predicted abundances reflects different assumptions among the models regarding production cross-sections, ³He/H and ³He/⁴He ratios of SEP, hardness of the energy spectrum, and the relative importance of gradual to impulsive SEP events. The abundances of the three SLRs predicted here are compared against observed abundances in bulk meteorites ^{16–19} (Fig.3).

In nearly all cases, the amounts of 26 Al and 53 Mn produced by SEP irradiation of a solar composition reservoir are significantly greater than the values observed in bulk meteorites $^{16-19}$, and an irradiation model accounting for 36 Cl, 26 Al and 53 Mn in a self-consistent manner is difficult to achieve (Fig. 3). Only in the case of an extremely hard energy spectrum ($p \ge 5$) is a self-consistent solution achievable (Fig. 3). If the initial 36 Cl abundance, however, was any higher than the assumed value (i.e., 36 Cl/ 35 Cl $> 2 \times 10^{-5}$), the problem will be exacerbated. The calculations presented above do not consider any delay between production and delivery of newly synthesized 36 Cl to the parent body or dilution of the irradiated product with unirradiated material. The 36 Cl abundance assumed for the calculation-predicted SLR abundances is likely a lower limit for the amount produced by late irradiation. Thus, 36 Cl production by late-stage SEP

irradiation of a reservoir with solar composition would very likely overproduce both ²⁶Al and ⁵³Mn.

Overproduction of ²⁶Al and ⁵³Mn can be avoided if the reservoir irradiated to produce ³⁶Cl was depleted in refractory elements (enriched in volatile elements) relative to a solar composition due to CAI and chondrule formation. In particular, irradiation of a reservoir enriched in chlorine – a primary target element for SEP production of ³⁶Cl – would significantly enhance the production of ³⁶Cl relative to ²⁶Al and ⁵³Mn. During the lifetime of the protoplanetary disk, chlorine is present mainly as HCl gas²⁰. It will condense as solid HCl hydrates (HCl•3H₂O) when temperatures fall below ~160 K and may adhere to mineral grains and water ice particles²⁰. Solar energetic particle irradiation of either an HCl-rich gas or dust particles mantled by HCl hydrates would significantly enhance the production of ³⁶Cl relative to ²⁶Al and ⁵³Mn.

As oxygen is the main target element to produce ¹⁰Be, ¹⁰Be will be co-produced with ³⁶Cl in any late SEP irradiation scenario. However, late addition of ¹⁰Be is difficult to detect in bulk meteorites because the small amount of ¹⁰B produced by decay of ¹⁰Be is likely to be overwhelmed by non-radiogenic ¹⁰B (the solar B/Be ratio is ~2). The most sensitive test for the late addition of ¹⁰Be is determination of boron-isotope abundances in late-forming secondary phases in CAIs or chondrules (e.g., wadalite or grossular). These measurements have not yet been performed but on the basis of the model presented here, we predict ¹⁰Be/⁹Be ratios exceeding 10⁻⁴ will be found.

The short half-life of ³⁶Cl requires that ³⁶Cl was incorporated into wadalite within 9×10⁵ years (i.e., within three half-lives of ³⁶Cl) following production. This temporal constraint places limits on the location of SEP irradiation in the protoplanetary disk. Most models of SLR production by SEP irradiation assume the irradiation occurs near the co-rotation point of the Sun and the protoplanetary disk, known as the X-point³, during the earliest stages of the solar system evolution when the Sun was a young (class 0) or accreting (class I) protostar. However, radial transport of material in the *latter stages* of the protoplanetary disk (when ³⁶Cl was produced) is

inefficient²¹ and we infer that formation of ³⁶Cl must have occurred adjacent to the region in

which the CV chondrite parent asteroid accreted.

We thus propose that ³⁶Cl was largely produced by late-stage SEP irradiation of a volatile-

rich reservoir in an optically thin protoplanetary disk while the Sun was a weak T Tauri star.

Subsequently, ³⁶Cl accreted into the CV chondrite asteroid together with condensed water ices

and was incorporated into secondary, chlorine-rich minerals, wadalite and sodalite, during

prolonged parent body alteration. Delivery of chlorine as a component of water ice is consistent

with the positive correlation between the chlorine content in chondrites and the degree of

aqueous alteration²⁰.

Supplementary Information: Includes mineralogy and petrography of wadalite-grossular mineral assemblage in

the Allende Type B CAIs, analytical methods, additional figures (S1-S4), and data tables (S1-S2) accompanies the

paper.

Acknowledgements: This work was supported by NASA Grants NAG5-10610 and NNX07AI81G (A.N. Krot,

P.I.), NAG5-4212 (K. Keil, P.I.), NNX08AG57G and NNX09AC93G (Q.-Z.Yin, P.I.) and NNH04AB47I (I.D.

Hutcheon, P.I.) and by the Glenn Seaborg Institute. This work performed under the auspices of the U.S. Department

of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Author Contributions: All authors contributed extensively to the work presented in this paper.

-7-

References:

- 1. Lin, Y., Guan, Y., Leshin, L. A., Ouyang, Z. & Wang, D. Short-lived chlorine-36 in a Ca- and Al-rich inclusion from the Ningqiang carbonaceous chondrite. *Proc. Nat. Acad. Sci.* 102, 1306–1311 (2005).
- 2. Hsu, W., Guan, Y., Leshin, L. A., Ushikubo, T. & Wasserburg, G. J. A late episode of irradiation in the early solar system: Evidence from extinct ³⁶Cl and ²⁶Al in meteorites. *Astrophys. J.* 640, 525–529 (2006).
- 3. Ushikubo, T., Guan, Y., Hiyagon, H., Sugiura, N. & Leshin, L. A. ³⁶Cl, ²⁶Al, and O isotopes in an Allende type B2 CAI: Implications for multiple secondary alteration events in the early solar system. *Meteorit. Planet. Sci.* 42, 1267–1279 (2007).
- 4. Wasserburg, G. J., Busso, M., Gallino, R. & Nollett, K. M. Short-lived nuclei in the early solar system: Possible AGB sources. *Nuclear Phys. A* 777, 5–69 (2006).
- 5. Huss, G. R., Meyer, B. S., Srinivasan, G., Goswami, J. N. & Sahijpal, S. Stellar sources of the short-lived radionuclides in the early solar system. *Geochim. Cosmochim. Acta* 73, 4922–4945 (2009).
- 6. Shu, F. H., Shang, H., Gounelle, M., Glassgold, A. E., & Lee, T. The origin of chondrules and refractory inclusions in chondritic meteorites. *Astrophys. J.* 548, 1029–1050 (2001).
- 7. Leya, I., Halliday, A. N. & Wieler, R. The predictable collateral consequences of nucleosynthesis by spallation reactions in the early solar system. *Astrophys. J.* 594, 605–616 (2003).
- 8. Gounelle, M., Shu, F. H., Shang, H., Glassgold, A. E., Rehm, K. E., & Lee. T. The irradiation origin of beryllium radioisotopes and other short-lived radionuclides. *Astrophysical J.* 640, 1163–1170 (2006).
- 9. Goswami, J. N., Marhas, K. K. & Sahijpal, S. Did solar energetic particles produce the short-lived nuclides present in the early solar system? *Astrophys. J.* 549, 1151–1159 (2001).
- 10. Boss, A. P. Mixing in the solar nebula: Implications for isotopic heterogeneity and large-scale transport of refractory grains. *Earth Planet Sci. Lett.* 268, 102–109 (2008).

- 11. Feigelson, E. D., Garmire, G. P. & Pravdo, S. H. Magnetic flaring in the pre-main-sequence sun and implications for the early solar system. *Astrophys. J.* 572, 335–349 (2002).
- 12. Villeneuve, J., Chaussidon, M., & Libourel. G. Homogeneous distribution of ²⁶Al in the solar system from the Mg isotopic composition of chondrules. *Science* 325, 985–988 (2009).
- 13. Jacobsen, B. *et al.* ²⁶Al-²⁶Mg and ²⁰⁷Pb-²⁰⁶Pb systematics of Allende CAIs: Canonical solar initial ²⁶Al/²⁷Al ratio reinstated. *Earth Planet. Sci. Lett.* 272, 353–364 (2008).
- 14. Ishii, H. A., Krot, A. N., Keil, K., Nagashima, K., Bradley, J. P., Teslich, N., Jacobsen, B. & Yin, Q.-Z. Discovery, mineral paragenesis, and origin of wadalite in a meteorite. *Amer. Mineral.* 95, 440–448 (2010).
- 15. Goswami, J. N., Marhas, K. K., Chaussidon, M., Gounelle, M. & Meyer, B. S. Origin of short-lived radionuclides in the early solar system. In *Chondrites and the Protoplanetary Disk*, eds. Krot A. N., Scott E. R. D., Reipurth B., Astronomical Society of the Pacific Conference Series 341, 485 (2005).
- 16. Thrane, K., Bizzarro, M. & Baker, J. A. Extremely brief formation interval for refractory inclusions and uniform distribution of ²⁶Al in the early solar system. *Astrophys. J.* 646, L159–L162 (2006).
- 17. Shukolyukov, A. & Lugmair, G. W. Manganese chromium isotope systematics of carbonaceous chondrites. *Earth Planet. Sci. Lett.* 250, 200–213 (2006)
- 18. Moynier, F., Yin, Q.-Z. & Jacobsen, B. Dating the first stage of planet formation. *Astrophys. J.* 671, L181–L183 (2007)
- 19. Trinquier, A., Birck, J.-L., Allègre, C. J., Göpel, C. & Ulfbeck, D. ⁵³Mn-⁵³Cr systematics of the early solar system revisited. *Geochim. Cosmochim. Acta* 72, 5146–5163 (2008).
- 20. Zolotov, M. Yu. & Mironenko, M. V. Hydrogen chloride as a source of acid fluids in parent bodies of chondrites. *Lunar Planet. Sci.* XXXVIII, A 2340 (2007).
- 21. Ciesla, F. J. Outward transport of high-temperature materials around the midplane of the solar nebula. *Science* 318, 613–615 (2007).

Figure captions:

Figure 1. Combined x-ray elemental map in Mg (red), Ca (green), and Al (blue) (a) and backscattered electron images (b, c) of the wadalite-grossular paragenesis in the Allende Type B CAI AJEF. Regions outlined in panels (a) and (b) are shown in greater detail in panels (b) and (c), respectively. Wadalite together with grossular and monticellite occurs in secondary veins crosscutting primary melilite. an = anorthite; grs = grossular; mel = melilite; mnl = monticellite; sp = spinel; wdl = wadalite.

Figure 2. Panel (a): $^{36}\text{Cl}^{-36}\text{S}$ isochron diagram of wadalite from the Allende CAI AJEF. The solid line represents a weighted, least-squares regression through the data and corresponds to $(^{36}\text{Cl}/^{35}\text{Cl})_0 = (1.81\pm0.13)\times10^{-5}$. Stippled lines represent the error envelope. The dashed line and lower slope in the inset represents the inferred $(^{36}\text{Cl}/^{35}\text{Cl})_0$ ratio for sodalite from the Allende CAI Pink Angel². Panel (b): $^{26}\text{Al}^{-26}\text{Mg}$ isochron diagram for grossular in the Allende CAI AJEF. The black solid line represents a weighted, least-squares regression through the data corresponding to $(^{26}\text{Al}/^{27}\text{Al})_0 = (1.1\pm2.8)\times10^{-6}$. Dashed lines represent the error envelope. The uncertainties in both panels (a) and (b) and inset are 2σ .

Figure 3. Ratio of calculated to observed abundances of 10 Be, 26 Al, and 53 Mn assuming a particle fluence sufficient to produce 36 Cl corresponding to $(^{36}$ Cl/ 35 Cl) = 2×10^{-5} . The calculated 26 Al and 53 Mn abundances are normalized to the inferred upper limits of 26 Al and 53 Mn abundances for bulk meteorite samples corresponding to 26 Al/ 27 Al $\leq 6\times10^{-6}$ and 53 Mn/ 55 Mn $\leq 9\times10^{-6}$, respectively. There are no constraints on the 10 Be abundance in bulk meteorites; instead the calculated abundance for 10 Be is normalized to the inferred solar initial value (i.e., 10 Be/ 9 Be = 1×10^{-3}). The range of ratios reflects different assumptions among the models regarding the production cross-sections, 3 He/H and 3 He/ 4 He ratios of the SEP, the hardness of the energy spectrum and the relative importance of gradual to impulsive SEP events.

Figures:

Fig. 1

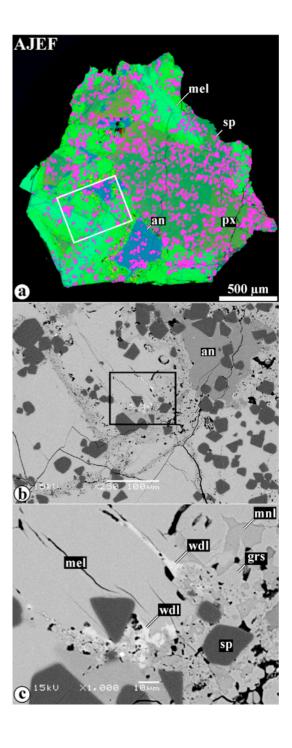


Fig. 2

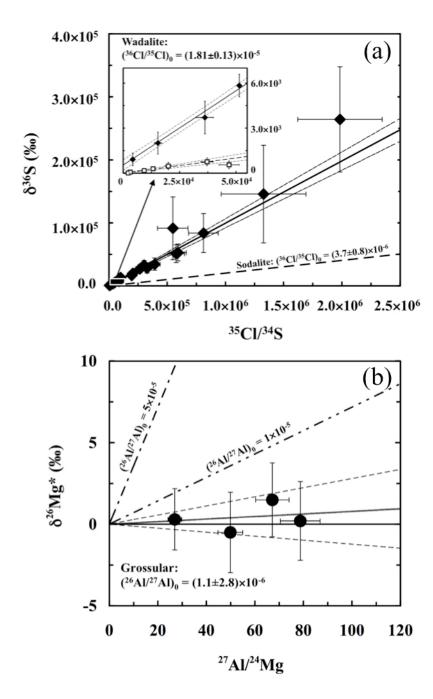
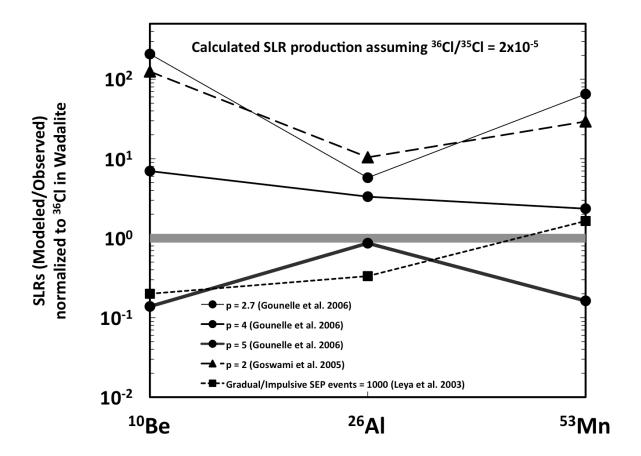



Fig. 3

